Talio (Tl): Configuración Electrónica y Diagrama de Orbitales

El talio es el elemento número 81 de la tabla periódica y su símbolo es "Tl". El talio es un elemento metálico clasificado de post-transición. El número total de electrones del talio es de ochenta y uno. Estos electrones están dispuestos según reglas específicas de diferentes órbitas. La disposición de los electrones en diferentes órbitas y orbitales de un átomo en un orden determinado se denomina configuración electrónica. La configuración electrónica del átomo de talio(Tl) puede hacerse de dos maneras.

  • Configuración electrónica a través del orbital (principio de Bohr)
  • Configuración electrónica a través de orbitales (principio de Aufbau)

La configuración electrónica a través de orbitales sigue diferentes principios. Por ejemplo, el principio de Aufbau, el principio de Hund y el principio de exclusión de Pauli.

Índice
  1. Configuración electrónica del talio(Tl) a través del orbital
  2. Configuración electrónica del talio(Tl) a través de orbitales
  3. ¿Cómo escribir el diagrama de orbitales del talio(Tl)?
  4. Configuración electrónica del ion talio (Tl3+)
  5. Video
  6. Preguntas Frecuentes

Configuración electrónica del talio(Tl) a través del orbital

El científico Niels Bohr fue el primero en dar una idea de la órbita del átomo. Proporcionó un modelo del átomo en 1913. Allí se da la idea completa de la órbita. Los electrones del átomo giran alrededor del núcleo en una determinada trayectoria circular. Estas trayectorias circulares se denominan órbita(cáscara). Estas órbitas se expresan por n. [n = 1,2,3,4 . . . el número de serie de la órbita].

Configuración electrónica del átomo de talio
Configuración electrónica del talio(Tl) (modelo de Bohr)

K es el nombre de la primera órbita, L es la segunda, M es la tercera, N es el nombre de la cuarta órbita. La capacidad de retención de electrones de cada órbita es 2n2.

Por ejemplo:

n = 1 para la órbita K.
La capacidad de retención de electrones de la órbita K es 2n2 = 2 × 12 = 2 electrones.
Para la órbita L, n = 2.
La capacidad de retención de electrones de la órbita L es 2n2 = 2 × 22 = 8 electrones.
Para la órbita M, n=3.
La capacidad máxima de retención de electrones en la órbita M es de 2n2 = 2 × 3= 18 electrones.
n=4 para la órbita N.
La capacidad máxima de retención de electrones en la órbita N es de 2n2 = 2 × 42 = 32 electrones.

Nihonio (Nh): Configuración Electrónica y Diagrama de Orbitales

Por lo tanto, la capacidad máxima de retención de electrones en la primera corteza es de dos, la segunda es de ocho y la tercera puede tener un máximo de dieciocho electrones. El número atómico es el número de electrones de ese elemento. El número atómico del talio es 81. Es decir, el número de electrones del talio es de ochenta y uno. Por tanto, un átomo de talio tendrá dos electrones en la primera corteza, ocho en la segunda, dieciocho en la tercera y treinta y dos en la cuarta.

Según la fórmula de Bohr, la quinta envoltura tendrá veintiún electrones, pero la quinta envoltura del talio tendrá dieciocho electrones y los tres electrones restantes estarán en la sexta envoltura. Por tanto, el orden del número de electrones en cada cáscara del átomo de talio(Tl) es 2, 8, 18, 32, 18, 3.

Los electrones pueden disponerse correctamente a través de las órbitas de los elementos 1 a 18. La configuración electrónica de un elemento con un número atómico superior a 18 no puede determinarse correctamente según el modelo atómico de Bohr. La configuración electrónica de todos los elementos puede realizarse mediante el diagrama de orbitales.

Configuración electrónica del talio(Tl) a través de orbitales

Los niveles de energía atómica se subdividen en subniveles energéticos. Estos niveles subenergéticos se denominan orbitales. Los subniveles energéticos se expresan mediante 'l'. El valor de 'l' va de 0 a (n - 1). Los niveles subenergéticos se conocen como s, p, d, f. La determinación del valor de 'l' para los diferentes niveles de energía es:

Si n = 1
(n - 1) = (1-1) = 0
Por lo tanto, el número orbital de 'l' es 1; Y el orbital es 1s.
Si n = 2
(n - 1) = (2-1) = 1.
Por lo tanto, el número orbital de 'l' es 2; Y el orbital es 2s, 2p.
Si n = 3
(n - 1) = (3-1) = 2.
Por lo tanto, el número orbital de 'l' es 3; Y el orbital es 3s, 3p, 3d.
Si n = 4
(n - 1) = (4-1) = 3
Por lo tanto, el número orbital de 'l' es 4; Y el orbital es 4s, 4p, 4d, 4f.
Si n = 5
(n - 1) = (n - 5) = 4.

Por lo tanto, l = 0,1,2,3,4. El número de orbitales será 5 pero 4s, 4p, 4d, 4f en estos cuatro orbitales es posible disponer los electrones de todos los elementos de la tabla periódica. La capacidad de retención de electrones de estos orbitales es s = 2, p = 6, d = 10 y f = 14. El físico alemán Aufbau propuso por primera vez la idea de la configuración electrónica mediante suborbitales.

Boro (B) configuración electrónica y diagrama de orbitales

El método de Aufbau consiste en realizar la configuración electrónica a través del nivel subenergético. El principio de Aufbau es que los electrones presentes en el átomo completarán primero el orbital de menor energía y luego continuarán gradualmente hasta completar el orbital de mayor energía. Estos orbitales se denominan s, p, d, f. El método de configuración electrónica de Aufbau es 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d.

Configuración de los electrones mediante el principio Aufbau
Configuración de los electrones a través del principio de Aufbau

Los dos primeros electrones del talio entran en el orbital 1s. El orbital s puede tener un máximo de dos electrones. Por lo tanto, los dos siguientes electrones entran en el orbital 2s. El orbital p puede tener un máximo de seis electrones. Por lo tanto, los siguientes seis electrones entran en el orbital 2p. El segundo orbital está ahora lleno. Por lo tanto, los electrones restantes entrarán en el tercer orbital.

Entonces, dos electrones entrarán en el orbital 3s y los siguientes seis electrones estarán en el orbital 3p de la tercera órbita. El orbital 3p está ahora lleno. Entonces, los siguientes dos electrones entrarán en el orbital 4s y diez electrones entrarán en el orbital 3d. El orbital 3d está ahora lleno. Entonces, los siguientes seis electrones entran en el orbital 4p. A continuación, los siguientes diez electrones entrarán en el orbital 4d.

El orbital 4d está ahora lleno. Entonces, los siguientes ocho electrones entran en el orbital 5p y 6s y los siguientes catorce electrones entrarán en el orbital 4f. El orbital 4f está ahora lleno de electrones. Entonces, los siguientes diez electrones entrarán en el orbital 5d y el electrón restante entrará en el orbital 6p. Por tanto, la configuración electrónica del talio(Tl) será 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p1.

¿Cómo escribir el diagrama de orbitales del talio(Tl)?

Para crear un diagrama de orbitales de un átomo, primero hay que conocer el principio de Hund y el principio de exclusión de Pauli. El principio de Hund consiste en que los electrones que se encuentran en diferentes orbitales con la misma energía se colocan de tal manera que pueden estar en el estado no apareado de número máximo y el espín de los electrones no apareados será unidireccional.

Y el principio de exclusión de Pauli es que el valor de los cuatro números cuánticos de dos electrones en un átomo no puede ser el mismo. Para escribir el diagrama de orbitales del talio(Tl), hay que hacer la configuración electrónica del talio. La cual ha sido discutida en detalle anteriormente. El 1s es el orbital más cercano y de menor energía al núcleo. Por lo tanto, el electrón entrará primero en el orbital 1s.

Aluminio (Al): Configuración Electrónica y Diagrama de Orbitales

Según el principio de Hund, el primer electrón entrará en el sentido de las agujas del reloj y el siguiente electrón entrará en el orbital 1s en el sentido contrario. El orbital 1s se llena ahora con dos electrones. A continuación, los dos siguientes electrones entrarán en el orbital 2s igual que en el orbital 1s. Los siguientes tres electrones entrarán en el orbital 2p en el sentido de las agujas del reloj y los siguientes tres electrones entrarán en el orbital 2p en el sentido contrario a las agujas del reloj.

A continuación, los dos electrones siguientes entrarán en el orbital 3s igual que en el orbital 1s y los seis electrones siguientes entrarán en el orbital 3p igual que en el orbital 2p. El orbital 3p está ahora lleno. Entonces, los siguientes dos electrones entrarán en el orbital 4s igual que en el orbital 1s. A continuación, los siguientes cinco electrones entrarán en el orbital 3d en el sentido de las agujas del reloj y los siguientes cinco electrones entrarán en el orbital 3d en el sentido contrario a las agujas del reloj.

Diagrama de orbitales del talio
Diagrama de orbitales del talio

El orbital 3d está ahora lleno. Entonces, los siguientes seis electrones entrarán en el orbital 4p al igual que en el orbital 2p. Entonces, los siguientes dos electrones entrarán en el orbital 5s igual que en el orbital 1s y los siguientes diez electrones entrarán en el orbital 4d igual que en el orbital 3d. El orbital 4d está ahora lleno de electrones. A continuación, los siguientes ocho electrones entrarán en el orbital 5p y 6s al igual que en el orbital 2p y 1s.

El orbital 6s está ahora lleno de electrones. Entonces, los siguientes siete electrones entrarán en el orbital 4f en el sentido de las agujas del reloj y los siete electrones restantes entrarán en el orbital 4f en el sentido contrario a las agujas del reloj. El orbital 4f está ahora lleno. Entonces, los siguientes diez electrones entrarán en el orbital 5d igual que en el orbital 3d y a continuación un electrón entrará en el orbital 6p en el sentido de las agujas del reloj. Esto se muestra claramente en la figura del diagrama de orbitales del talio.

Configuración electrónica del ion talio (Tl3+)

La configuración electrónica del talio en estado básico es 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p1. La configuración electrónica muestra que la última capa del talio tiene tres electrones. Por lo tanto, los electrones de valencia del talio son tres. Los elementos que forman enlaces donando electrones se llaman cationes. El átomo de talio dona tres electrones en la última capa para formar un ion de talio (Tl3+). Es decir, el talio es un elemento catiónico.

Tl – 3e → Tl3+

Galio (Ga): Configuración Electrónica y Diagrama de Orbitales

La configuración electrónica del ion talio (Tl3+) es 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10. Esta configuración electrónica muestra que el ion talio (Tl3+) tiene cinco capas y la última capa tiene dieciocho electrones y alcanza una configuración electrónica estable. El átomo de talio presenta estados de oxidación +1 y +3. El estado de oxidación del elemento cambia en función de la formación del enlace.

Video

Preguntas Frecuentes

¿Cuál es el símbolo del talio?

El símbolo del talio es "Tl".

¿Cuántos electrones tiene el talio?

81 electrones.

¿Cómo se escribe la configuración electrónica del talio?

La configuración electrónica del talio es 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p1.

¿Cuál es la valencia del talio?

La valencia del talio es 1 y 3.

Referencia:

Si quieres conocer otros artículos parecidos a Talio (Tl): Configuración Electrónica y Diagrama de Orbitales puedes visitar la categoría Configuración de los electrones.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Subir